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Natural killer (NK) cells are powerful immune effectors whose antitumor activity is regulated through a sophisticated network of
activating and inhibitory receptors. As effectors of cancer immunotherapy, NK cells are attractive as they do not attack healthy self-
tissues nor do they induce T cell-driven inflammatory cytokine storm, enabling their use as allogeneic adoptive cellular therapies.
Clinical responses to adoptive NK-based immunotherapy have been thwarted, however, by the profound immunosuppression
induced by the tumor microenvironment, particularly severe in the context of solid tumors. In addition, the short postinfusion
persistence of NK cells in vivo has limited their clinical efficacy. Enhancing the antitumor immunity of NK cells through genetic
engineering has been fueled by the promise that impaired cytotoxic functionality can be restored or augmented with the use of
synthetic genetic approaches. Alongside expressing chimeric antigen receptors to overcome immune escape by cancer cells,
enhance their recognition, and mediate their killing, NK cells have been genetically modified to enhance their persistence in vivo
by the expression of cytokines such as IL-15, avoid functional and metabolic tumor microenvironment suppression, or improve
their homing ability, enabling enhanced targeting of solid tumors. However, NK cells are notoriously adverse to endogenous
gene uptake, resulting in low gene uptake and transgene expression with many vector systems. Though viral vectors have
achieved the highest gene transfer efficiencies with NK cells, nonviral vectors and gene transfer approaches—electroporation,
lipofection, nanoparticles, and trogocytosis—are emerging. And while the use of NK cell lines has achieved improved gene
transfer efficiencies particularly with viral vectors, challenges with primary NK cells remain. Here, we discuss the genetic
engineering of NK cells as they relate to NK immunobiology within the context of cancer immunotherapy, highlighting the
most recent breakthroughs in viral vectors and nonviral approaches aimed at genetic reprogramming of NK cells for improved
adoptive immunotherapy of cancer, and, finally, address their clinical status.

1. Introduction

Natural killer (NK) cells are part of the innate immune
response against tumors and are emerging as powerful effec-
tors of cancer immunotherapy. NK cells express a fixed set of
germ line-encoded activating and inhibitory receptors, upon
which they rely on for the recognition of cancer cells [1].
These receptors enable them to recognize major histocom-
patibility complex (MHC) class I molecules on target cells
and allow them to maintain tolerance to self-tissues [2]. This
is in contrast to adaptive immune cells such as T cells, which
undergo receptor rearrangement to modulate target recogni-
tion. The majority of NK cells, as well as some T cells, express

the receptor family natural killer group 2 (NKG2), which
includes NKG2A, B, C, D, E, F, and H. Among these, NKG2A
and B are inhibitory receptors. Human NK cells are typically
characterized as CD3−CD56+ and differ in functionality and
maturation status. The responsiveness of NK cells to tumor
targets is determined by their education status [3], which
ultimately regulates the level of antitumor effector function
and control alloreactivity.

Despite their potent antitumor function, the pathogene-
sis of many cancers induces inhibition of NK cell effector
function via mechanisms that include severe immunosup-
pression via immunometabolic and antigen escape routes
[4, 5]. For those reasons, for the past decade, scientists have
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pursued approaches aimed at enhancing NK cells’ antitumor
activity and priming them to avoid immunosuppression
through genetic engineering. These approaches have ranged
from enhancing the proliferation of the cells following adop-
tive transfer via the expression of endogenous cytokines to
suppression of tumor microenvironment (TME) inhibitory
signals, or the enhancement of the cells’ cytotoxic function.
The latter approach has primarily relied on redirecting NK
cells by chimeric antigen receptors (CARs). These are recom-
binant constructs consisting of an extracellular single-chain
variable fragment (scFv) linked to intracellular signaling
domains. The scFv mediates antigen recognition and binding
by recognizing antigen expression on cancer cells and
triggering NK cell activation [6]. Engineering of NK cells
has been achieved using both viral and nonviral approaches,
each defined by a set of challenges. These approaches have
resulted in remarkable preclinical discoveries, though only a
handful of studies have advanced through the clinical pipe-
line. Here, we discuss the latest advances in physical
approaches for the genetic engineering of NK cells and the
molecular targets used to effect their function.

2. NK Cell Biology Relevant to Immunotherapy

The cytotoxicity of natural killer cells is determined by a
signaling interplay of a vast repertoire of inhibitory and acti-
vating receptors (Figure 1). Unlike T cells, NK cells do not
express specific antigen receptors and do not require prior
sensitization to trigger killing of target cells [7]. However,
recent reports have advanced the notion that NK cells possess
features of an adaptive immune response and that their cyto-
toxicity is most fully realized following priming by myeloid
lineage cells, such as dendritic cells [8]. Understanding NK
cell biology, their effector function, and their functional and
metabolic interactions with the TME are key to developing
targets for NK cell-based adoptive immunotherapies. The
two major populations of NK cells are CD56dim and
CD56bright NK cells, found in similar proportions in cord
blood and peripheral blood [9]. Phenotypically, human NK
cells are characterized by the expression of CD56 (N-CAM)
and CD16 (FcγRIIIA) markers and the lack of CD3.
CD56bright NK cells are CD16 dim or negative, while
CD56dim cells are also characterized by CD16high expression
and represent the major circulating NK subset [10]. CD56dim

NK cells exert higher natural cytotoxicity, while CD56bright

cells―generally considered to be the precursor to the
CD56dim subset [11]―have higher capacity for producing
cytokines [12]. Their differential expression of IL-2R is asso-
ciated with differences in both subsets’ proliferative capacity
[13]. In addition, defined subsets of mature NK cells with
memory-like features are also characterized by expression
of CD57 [14] or CD62L [15], specific for CD56dim NK cells.
Mouse NK cells do not express CD56; however, mouse NK
cells expressing the chemokine receptor CXCR3 were
recently described as representing the murine equivalent to
human CD56bright cells [16]. It is also important to note that
differentiation of NK cells into mature, functional popula-
tions is accompanied by acquisition of distinct phenotypic
markers [17]―as a consequence, targeting NK cells for

immunotherapies requires a precise understanding of the
molecular markers of functional maturation of these cells.

Broadly, the function of NK cells is mediated by soluble
factors, including chemokines, cytokines, and other secreted
ligands of NK cell receptors. A single NK cell typically
expresses two to four inhibitory receptors in addition to a
number of activating receptors, yielding a vastly heteroge-
neous cell population. Through these receptors, NK cells
mediate their cytotoxicity against virus-infected cells. The
use of genetically engineered NK cells against tumors has
relied on the ability to mediate the cells’ cytotoxicity through
the modulation of activating and inhibitory signals received
from multiple germ line-encoded receptors [18].

Two main hypotheses have been suggested to describe
NK cell activation based on their receptor profile: “missing
self” and “induced self.” [19] Based on the “missing self”
theory, NK cells can recognize aberrant target cells which
lack inhibitory MHCmolecules, in turn promoting their lysis
via engagement of NK cells via activating receptors [20].
Functional control is further mediated by normal cells, which
regularly express MHC and lack activating receptors. The
“missing self” hypothesis is supported by a high number of
studies that have shown that decreased expression of MHC
class I molecules on tumor cells correlates to their higher sus-
ceptibility to NK cell killing. The complementary “induced
self” mechanism of activation states that cancer cells display
elevated expression of ligands for NK cell receptors such as
NKG2D due to stress factors, resulting in the engagement
of NK cells [21]. Despite the expression of inhibitory recep-
tors, activation by “induced self” is able to override inhibitory
signals present on cancer cells. The two mechanisms are not
contradictory and likely work together to modulate the
overall responses of NK cells to pathogens.

Activating receptors include the natural cytotoxicity
receptors (NKp46, NKp44, and NKp30), C-type lectin-like
receptors (NKG2D and CD94-NKG2C), and Ig-like recep-
tors (2B4). Inhibitory receptors, on the other hand, include
the killer immunoglobulin-like receptors (KIR) or Ig-like
receptors (CD158), the C-type lectin receptors (CD94-
NKG2A), and leukocyte inhibitory receptors (LIR1 and
LAIR-1). Each of these receptors is associated with distinct
signaling molecules: [22] NKp46, for instance, is associated
with the FcR γ chain or the TCR ζ chain. NKp44 associates
with the immunoreceptor tyrosine-based activation motif-
(ITAM-) bearing signaling molecule DAP12, while NKG2D
associates with DAP12 or DAP10, which signals through
phosphatidylinositol-3 kinase and other pathways [23]. An
alternative activation/inhibition pathway is facilitated by
costimulatory receptors such as CD244 (2B4), member of
the signaling lymphocytic activation molecule (SLAM)
family, which signals through recruitment of Src homology
2 domain containing adapter proteins SAP or ERT [24]. In
addition, NK cells can induce target cell death using tumor
necrosis factor-α (TNF-α), Fas ligand, and TNF-related
apoptosis-inducing ligand (TRAIL) [25].

Inhibition of NK cell cytotoxicity is directed by recog-
nition of major histocompatibility complex class I mole-
cules (MHC-I) expressed on target cells. Inhibitory KIRs
signal through intracellular immunoreceptor tyrosine-based
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inhibitory motifs (ITIMs) [26]. Interactions between MHC
molecules―human leukocyte antigens (HLAs), specifically
HLA-A, HLA-B, and HLA-C―and KIR receptors [27] con-
tribute to driving NK cytotoxicity by inducing the spontane-
ous killing of targets that either lack self MHC or express
allogeneic MHC molecules [28]. There are no rules which
dictate which KIRs express on which NK cells, though
their expression is regulated by methylation of KIR gene
loci [29]. Among KIR genes, three are common to all hap-
lotypes―KIR3DL3, KIR2DL4, and KIR3DL2.

NK cell maturation is accompanied by phenotypic
changes and alteration in functional potential. Less mature
and differentiated NK cells are more sensitive to cytokine
stimulation and respond by more potently expressing
IFN-γ. Conversely, more mature differentiated NK cells
show increased CD57 expression, a decrease in CD94/
NKG2A expression, and higher KIR numbers [15]. Simi-
larly, activation of NK cells in response to receptors on
cancer cells is associated with a number of functional
changes [30]. Signaling cascades following activation on
NK cells are different for the various receptors [31]. Collec-
tively, these activation mechanisms fuel the killing of target
cells by NK cells via the polarized release of the contents of
lytic granules at the immunological synapse. This occurs in
two steps: polarization and degranulation. Firstly, microtu-
bule organizing center (MTOC) andMTOC-associated gran-
ules traffic toward locations on the plasma membrane that
are in contact with cancer cells (polarization), which is
followed by fusion of the granules with the plasma mem-
brane (degranulation) [18]. These two processes can occur
independently. Polarization was shown to be transient and
highly sensitive to inhibition, unlike degranulation, and

occurs differently based on which cytokines are used to prime
NK cells [32]. Among receptors, NKG2D and LFA-1 are able
to autonomously signal for granule polarization.

Activating receptors on NK cells can also be altered due
to the tumor microenvironment. Transforming growth fac-
tor-β (TGF-β), an immunosuppressive cytokine enriched in
many advanced cancers, was shown to induce downregula-
tion of NKG2D/DAP10 on NK cells [33]. Similarly, hypoxia,
associated with the pathology of many solid tumors, was
reported to downregulate as number of activating NK cell
receptors, including NKp46, NKp30, NKp44, and NKG2D,
irregardless of whether NK cells were primed with IL-2,
IL-12, IL-15, or IL-21 [34]. This highlights that targeting
dysregulated pathways in cancer is a meaningful approach
to restore inhibition of activation signals that mediate
cytotoxicity of NK cells against cancer cells.

Priming with cytokines, however, is critical for adoptive
NK cell immunotherapy, as these cells cannot persist without
activation. NK cells have been primed with IL-2, IL-12, IL-15,
IL-18, or IL-21. Though IL-2 has been the most commonly
used cytokine, the use of IL-12 and IL-15 has been shown
to induce higher amounts of IFN-γ and thus potentiate the
cells’ cytotoxicity. The roles of IL-15 on NK cell homeostasis,
proliferation, cytokine production, and cytotoxicity have
been extensively described [35, 36]. Boieri et al. reported that
preactivation of NK cells with a combination of IL-12, IL-15,
and IL-18 resulted in significant enhancement of NK cell
cytotoxicity and upregulation of activation markers. More
importantly, adoptive transfer of these cells dramatically
slowed progression of Roser leukemia in vivo [37].

Though priming with cytokines has been traditionally
employed to activate NK cells, the highest NK expansion
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Figure 1: Diagram showing the three main approaches aimed at genetically engineering NK cells: viral transduction, electroporation
(nonviral), and nanoparticle-based transduction (nonviral). These engineering approaches aim to enhance safety, improve cytotoxicity,
and increase persistence of NK cells in the tumor microenvironment. NK cells respond to tumor targets by calibrating an array of
inhibitory and activating receptors, which can be used in genetic engineering approaches to further direct NK cell function.
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rates have been obtained with the use of feeder cell lines, such
as HFWT, genetically modified K562 cells to express IL-15 or
IL-21, and EBV-transformed lymphoblastoid cell lines (EBV-
LCL). K562 cells modified to express IL-12, IL-2, and 4-1BB
have yielded expansion rates of 1000-fold [38]. Expansion
rates and characteristics of other feeder cell lines used for
NK cell therapy have been described in detail elsewhere [39].

NK cells have been demonstrated to be promising in allo-
geneic adoptive transfer settings. However, prior immune
suppression is required to mitigate immune reactivity of
NK cell infusions. Typically, this includes a nonmyeloabla-
tive conditioning regimen using cyclophosphamide and flu-
darabine [40]. Recently, Curti et al. reported results of a
phase I trial using KIR ligand-mismatched haploidentical
NK cells to treat seventeen acute myeloid leukemia patients
in complete remission after fludarabine/cyclophosphamide
chemotherapy and followed by administration of IL-2. 22.5
months after allogeneic NK cell transplantation, 9/16 (56%)
remained alive and disease-free. These responses correlated
with the infusion of higher doses of alloreactive NK cells
[41]. In recent years, emerging results from phase I and phase
II trials have demonstrated safety and efficacy of allogeneic
infusions of NK cells for immunotherapy of hematological
malignancies and solid tumors [42].

3. Sources of NK Cells for Genetic Engineering

NK cells used in immunotherapy can be derived from various
sources, including cord blood [43, 44], peripheral blood [45],
adult hematopoietic stem cells (HSCs) [46], embryonic stem
cells (ESCs) [47], or induced pluripotent stem cells (iPSCs)
[48]. Most adoptive NK cell-based products are typically gen-
erated with cells enriched from peripheral blood of haploi-
dentical donors collected by apheresis. Such collections can
be performed in a closed system under cGMP conditions,
thus minimizing the risk of contamination. While peripheral
blood contains approximately 0.08–0.43× 106 NK cells/ml,
the vast majority (about 90%) of peripheral blood NK cells
are CD56dimCD16+ cells. These cells have been engineered
with a wide variety of CARs targeting CD19, CD20, and
ErbB2 or containing NKG2D [49]. Because obtaining suffi-
cient numbers of NK cells for therapy is a major challenge
in the preparation of these cells for clinical use, multiple
approaches aimed at improving their ex vivo expandability
have been developed [50]. Among these, the use of feeder
cells is common―cocultivation of NK cells in the presence
of another cell type that provides a stimulatory signal. Cells
used as feeder layers have included cancer cells [51] such as
the Jurkat subline KL-1 [52], genetically modified K562 cells
engineered to express membrane-bound IL-15 and IL-21
fused to 4-1BB [53, 54], Epstein-Barr virus-transformed
lymphoblastoid cells [55], or irradiated peripheral blood
mononuclear cells in the presence of anti-CD16 antibody
[56]. Particle-based approaches, such as the use of plasma
membrane vesicles derived from K562-mbIL15-41BBL or
K562-mbIL21-41BBL feeder cells, have also been described
[57] and are currently in preclinical development.

However, multiple factors affect the number of cells that
can be retrieved from peripheral blood [58]. The proportion

of mature NK cells is lower in peripheral blood associated
with pathological settings―Mamessier et al. [59] character-
ized NK cells in the peripheral blood of breast cancer
patients, showing inhibition of NK cell maturation and
diminished cytotoxicity, alongside a higher proportion of
CD56dimCD16− and CD56brightCD16− cells. A similar obser-
vation was also made in a separate study looking at periph-
eral blood NK cells from patients with colorectal cancer
[60]. These cells also exhibited deficiencies in the production
of interferon-γ and cytotoxic granules.

While genetic modifications of peripheral blood-derived
NK cells have been carried out to successfully generate func-
tionally competent NK cells, they are nonetheless considered
difficult. An alternative source of NK cells to peripheral blood
is cord blood. The expansion of clinical numbers of NK cells
(2× 109) from umbilical cord blood was achieved in a cGMP-
compliant closed system without the need for feeder cells
[61]. Benefits to using cord blood as a source of NK cells
include its relative ease of collection [62], the fact that cord
blood contains fewer T cells thus minimizing the risk of
GvHD [63], and the presence of unique NK progenitor cells
that are absent in peripheral blood [64, 65]. Cord blood
NK cells have been genetically engineered to express a
number of CARs: NK cells expressing antiCD19-CD28-
CD3ζ CARs, IL-15, and iCasp9 [66] are currently in clin-
ical trials (NCT03056339), while a similar expression sys-
tem redirected against CS1 is being studied preclinically.

Both hESC- and iPSC-derived NK cells have demon-
strated potent in vivo antitumor activity [67, 68]. hESC lack
contaminating T or B cells, significantly facilitating NK cell
selection, and it has been argued that they are more cytotoxic
and functionally mature than umbilical cord blood-derived
NK cells. In addition, they have higher levels of KIR expres-
sion than umbilical cord blood NK cells [69]. They were also
found to express activating and inhibitory NK receptors
similarly to peripheral blood-derived NK cells, including
NKG2D, NKp46, Fas, TRAIL, and KIRs [70]. Knorr et al.
[71] imaged trafficking of hESC-derived NK cells using
mouse embryonic fibroblast (MEF) feeder cells to tumor sites
and observed persistence of these cells for up to 25 days.
Clinical scale expansion of hESC- and iPSC-derived NK cells
has also been successfully demonstrated [48]. However,
efforts at using these cells are largely focused on improv-
ing culture conditions―feeder lines are needed for many
of the expansion protocols. Increasingly, these cells are
being used in immunotherapeutic interventions. Recently,
Hermanson et al. [72] showed that iPSC-derived NK cells
mediate ovarian cancer killing at least as well as periph-
eral blood-derived NK cells. The same lab also generated
NK cells from pluripotent stem cells engineered to express
CD16a, which remained resistant to shedding by ADAM17
[58]. Due to the relative ease of genetically engineering plu-
ripotent stem cells compared to NK cells from peripheral or
umbilical cord blood, this example may represent a promis-
ing strategy for generating genetically modified NK cells for
use in immunotherapy.

Several NK cell lines also exist. These cell lines were
developed to overcome some of the difficulties with
obtaining and expanding sufficient cells from blood
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sources. NK cell lines include NK-92, NKG, NKL, KHYG-1,
YT, NK-YS, SNK-6, HANK-1, IMC-1, YTS, and NKL cells
[73]. Though cell lines such as YTS have been successfully
engineered with CARs signaled through protein DAP12
[74], the NK-92 cell line is the most widely studied and the
only one that has shown consistent cytotoxicity against
tumor targets. It is also the only NK line that has been inves-
tigated clinically. Similarly to blood-derived NK cells, NK-92
cells express CD56 and lack CD3 but unlike blood NK cells,
NK-92 cells do not express KIRs and lack some activating
receptors such as NKp44 and NKp46. They also lack CD16
and are thus unable to participate in antibody-dependent
cell-mediated cytotoxicity (ADCC). Derived from the
peripheral blood of a patient with non-Hodgkin’s lym-
phoma, the cell line was developed by NantKwest and
has undergone extensive preclinical and clinical develop-
ment [75]. In a recent clinical study involving fifteen
patients with either solid tumors or lymphoma/leukemia,
infusion of 1010 NK-92 cells/m2 resulted in antitumor
response in three-fourths of patients with lung cancer
[76]. Other clinical studies with the NK-92 cell line on
solid tumors have also recorded positive outcomes [77]. In
addition to being used as adoptive immunotherapies, NK-
92 cells have also been successfully engineered as CAR
carriers [78–80]. One potential drawback to the use of the
NK-92 cell line is the need for irradiation to avoid allogeneic
tumor engraftment.

In summary, peripheral blood remains the most common
single source of NK cells for preclinical and clinical develop-
ment. However, issues of donor variability, sourcing con-
straints, and the inability to facilitate allogeneic therapy
have fueled the search for alternative sources of NK cells that
can avoid some of these drawbacks. Though cord blood-
derived, engineered NK cells have progressed to clinical
trials, so far, however, these cells have been engineered to
target a limited number of cancer antigens and less is known
about their functional and cytotoxic profile. As the field seeks
routes to allogeneic therapy, alternative sources of NK cells
are likely to become more prominent. The use of cell lines
is unlikely to move beyond NK-92 cells, and their lack of
ADCC limits their use in combination immunotherapies
with monoclonal antibodies. It is likely that induced pluripo-
tent stem cells will emerge as more prominent sources of

allogeneic stem cells potentially contrasting the use of cell
lines once more protocols are developed. Our knowledge of
NK cell biology is constrained by a limited understanding
of the role of immunometabolism on NK cell effector func-
tion: TME immunosuppression evades recognition by mech-
anisms other than antigen escape, and it will be important to
define how NK cell maturation, licensing, memory, and
education are affected by immunometabolic signaling in
order to design effective therapies for targets that have been
more evasive, such as solid tumors.

4. Engineered T vs NK Cells

Despite the extensive use of NK cells as immunotherapies
against solid refractive tumors, T cells have so far received
the most clinical attention, through approaches primarily
involving immunological checkpoint blockade and adoptive
cell transfer. The use of T cells has been additionally buoyed
by the approval of the first two engineered CAR-T cell
therapies by the FDA in 2017. NK cells, however, remain
an attractive proposition that presents a number of potential
advantages compared to T cells (Table 1). Unlike T cells, NK
cells’ killing of target cells is tumor-associated antigen-
independent [81]. The long-term persistence of CAR T cells
[82] postinfusion has been shown to cause B cell aplasia
[83], requiring intravenous immunoglobulin replacement.
This has resulted in approaches that attempt to reduce the
persistence of CAR T cells after their “therapeutic window,”
with companies such as Endocyte working in the space. In
contrast, NK cells have very short response times, which
range from minutes to hours, and typically require cytokine
stimulation for sustained persistence in vivo, which is more
limited compared to that of T cells. Withdrawal of cytokines
was suggested as being detrimental to NK cell cytotoxicity,
while their presence could induce changes in the functional-
ity, cell shape, and activation properties of NK cells, bringing
into question important consideration for appropriate proto-
cols for ex vivo stimulation of NK cells [84]. IL-2-activated
NK cells also act as serial killers, with each NK cells shown
by live video microscopy to kill as many as four cells [85].

Broadly, toxicities associated with engineered T cells
include those of neurological nature, cytokine release

Table 1: Differences between CAR-NK and CAR-T cells.

CAR-NK cells CAR-T cells

Sources Cord blood, peripheral blood, iPSC, cell lines Cord blood, peripheral blood, iPSC

Expansion
Flasks or bag-based expansion systems with
cytokines (IL-2, IL-12, IL-15, IL-18, IL-21);
or feeder cell lines (engineered K562 cells)

Flasks or bag-based expansion systems with
cytokines (IL-2 or IL-7)

Use Autologous; allogeneic possible Autologous; allogeneic with MHC match

Engineering methods
Viral transduction, electroporation/

nucleofection, nanoparticles, trogocytosis
Viral transduction, electroporation/

nucleofection, nanoparticles, trogocytosis

Transfection efficiencies Low even with viral vectors Higher than for NK cells

Adoptive transfer considerations Limited persistence

GvHD

Cytokine storm

Suicide genes needed
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syndrome, anaphylaxis, off-target effects, and insertional
mutagenesis [86].

For a long time, NK cells have been attractive due to the
pervasive opinion that they do not induce graft-versus-host
disease (GvHD). This was supported by a large number of
studies involving adoptive transfer of NK cells into hemato-
poietic cell transplant recipients, which did not record GvHD
induction after infusion [87–89]. Similarly, neither did
adoptively transfer allogeneic haploidentical NK cells into
lympho-depleted patients in nonallogeneic HCT settings
[90]. Conversely, Shah et al. [38] observed the onset of GvHD
in the presence of subthreshold T cell doses following
adoptive transfer of donor-derived IL-15/4-1BBL-activated
NK cells following HLA-matched nonmyeloablative periph-
eral blood stem cell transplantation. GvHD was higher in
matched unrelated donor as opposed to matched sibling
donor recipients and was thought to occur by enhancing T
cell alloreactivity. Such conflicting results have advanced a
dual promoting/suppressive model of NK cells in GvHD
[91]. The GvHD promoting effect is thought to be associated
with higher amounts of IFN-γ-producing NK cells after
hematopoietic cell transplantation inducing acute GvHD
[92]. On the other hand, the GvHD suppressive role is exerted
by cytolysis of T and dendritic cells by NK cells, alongside
their limited persistence in vivo. Elsewhere, Meinhardt et al.
[93] discovered that the CD11b+ murine NK subset has the
ability to provide protection against acute GVHD. Nonethe-
less, the NK cells’ short persistence, depletion of alloreactive
T cells, or antigen-presenting cells still make NK cells attrac-
tive as potential allogeneic immune effectors.

Related to NK cells’ persistence is their promotion of
immune reconstitution following adoptive cell transfer. A
number of studies have investigated immune system
reconstitution with NK cells and its relationship to the
development of GvHD [94, 95]. Huenecke et al. [96] investi-
gated the reconstitution of NK cell populations following
hematopoietic stem cell transplantation (HSCT) and found
that, after 12months, their distribution matched the 50th
percentile of the reference range for healthy individuals,
while patients suffering from acute and chronic GvHD were
characterized by a delayed reconstitution of NK cells. The
study further found that the CD56bright subset was the first
to appear posttransplantation, with CD56int NK cells 3
months post-HSCT, followed by CD56dim cells. CD56bright

and CD56int shared almost identical expression marker
profiles, unlike CD56dim cells which lacked KIRs, CD62L,
NKG2A, and CD57. While the presence of elevated levels
of CD56bright cells correlated to patients lacking GvHD, the
identification of CD56bright cells as a potential prognostic
factor for GvHD requires further studies, not least because
of confounding factors including, among others, patient data
reproducibility and GvHD pathology grade.

5. Strategies for the Genetic Modification of
NK Cells

For more than a decade, investigators have pursued methods
to genetically engineer NK cells for use in clinical therapy
against cancer. One of the earliest examples of genetic

modification of NK cells involved the retroviral transduction
of the cells with IL-2 cDNA to induce expression of endoge-
nous IL-2 and enhance the cells’ persistence in vivo [97] and
reduce the cells’ reliance on exogenous supply of cyto-
kines. Since then, genetic modification of NK cells has
expanded to include a number of additional approaches:
from enhancing their target recognition specificities by
the engineering of CARs to suppressing tumor microenvi-
ronment inhibition. Engineering of NK cells has most
commonly been achieved with viral vectors, delivering a
variety of transgenes, with CARs being among the most com-
mon ones. These are fusion proteins composed of an antigen
recognition domain―typically an antibody single-chain
variable fragment (scFv)―fused to a variety of intracellular
signaling domains. The second and third generation CARs,
wherein the extracellular antigen recognition domain is fused
to two or three transmembrane and intracellular signaling
domains, have been most commonly developed with NK cells
(Table 2). Strategies aimed at improved NK cell immuno-
therapy through genetic engineering have enabled the
enhancement of persistence, safety, and efficacy (Table 2).
Persistence has been achieved via the engineering of
cytokine-expressing NK cells, which can retain sustained
IL-2 and IL-15 self-expression during their effector func-
tion. Efficacy has been achieved via the engineering of
CARs targeting and improving the recognition of cancer-
associated antigens, while the use of allogeneic sources of
NK cells, such as NK cell lines, or incorporation of suicide
genes—namely, inducible caspase 9 (iCasp9)—has been
aimed at improving safety.

One of the main challenges associated with engineering
NK cells is the low gene transfer efficiency of blood NK cells
with either viral-based or nonviral methods, though viral-
based transduction has been associated with significantly
higher yields. Other issues being explored for overall
improvement include efficiency of vector-mediated intracel-
lular trafficking of nucleic acid cargo, immune response,
regulatory issues that relate to manufacturing and standard-
ization, and commercialization. Improvements in vector
design as well as the use of new biomaterials as nucleic acid
carriers are being pursued to enhance safety while improving
gene transfer efficiency.

5.1. Viral Vectors for Genetic Engineering of NK Cells. Though
difficult to transduct, efficiency of transduction of NK cells is
relatively high with viral vectors compared to nonviral
methods. The most commonly used viral vectors for the
generation of CAR-engineered immune cells are part of the
retrovirus family which includes α-, β-, γ-, δ-, and ε-retrovi-
ruses, spumaviruses, and lentiviruses. Integration profiles
have been defined for all except ε-retroviruses [98]. During
retroviral genome integration, the viral RNA genome, reverse
transcribed into double-stranded DNA, associates to the host
cell chromatin and integrates in the genome via the activity of
integrase, a viral protein encoded by the pol gene. Based on
their integration profiles, retroviruses can be divided into
three groups. These include, firstly, murine leukemia virus
(MLV), foamy virus (FV), and human T cell leukemia virus
(HTLV), secondly, human immunodeficiency virus (HIV)
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and simian immunodeficiency virus (SIV), and, thirdly, avian
sarcoma-leucosis virus (ASLV), which is the least discrim-
inatory in terms of integration preferences. Among these,
lentiviral or α-retroviral vectors are most commonly used
[99, 100]. Like all retroviruses, they allow for stable integra-
tion with prolonged expression of the desired transgene.
While new generations of vectors have shown significantly
improved safety, toxicity and immunogenicity are still being
cited as potential drawbacks to their clinical use [101, 102].
During transduction of an NK cell, the gene-encoding vector
is semirandomly and stably incorporated into the host NK
genome. This can result in insertional mutagenesis and has
been reported in a number of studies using γ-retroviral
vectors for the treatment of a variety of pathologies, includ-
ing X-linked severe combined immunodeficiency and the
Wiskott-Aldrich syndrome [103–106]. It is considered one
of the main drawbacks to using viruses as gene transduction
vectors. Since the beginning of the use of viral vectors in gene
therapy, vector design approaches have employed architec-
tures aimed at driving improved transgene expression, such
as the incorporation of long terminal repeats (LTRs) [107].
These are homologous regions flanking the 5′- and 3′-ter-
mini of the double-stranded proviral DNA genome. These
regions code for DNA that mediates circle formation prior
to integration of the proviral DNA into the host cell. Addi-
tionally, the use of a self-inactivating sequence (SIN) adapted
from lentiviral vectors to γ- and α-retroviral vectors enables
the elimination of promoter/transcriptional activity of the
wild-type LTR to address concerns regarding insertional
mutagenesis [108]. Moreover, reducing the likelihood of
replication competent retroviruses (RCRs) being formed
has been achieved by a number of strategies including
deletion of genes required for self-replication and reduction
of overlapping sequences of viral genomes and vector-
producing cells [109]. These strategies have been used in a
number of clinical studies [110]. Insertional mutagenesis
has been a recognized safety issue with γ-retroviral vectors.
The use of integrase-deficient lentiviral vectors has demon-
strated potential safety improvements [111]. These vectors
have been used preclinically in cancer therapy [112]. They
have gene packaging capability that is comparable to inte-
grating lentiviral vectors and are expressed transiently with
limited integration capability, thus enhancing safety by
avoiding genomic integration. As a result, they are primarily
used for the transduction of postmitotic cells. Due to the
transient nature of gene expression mediated by these vec-
tors, they suffer from the drawback of loss of gene expres-
sion in dividing cells as nonviral vectors. Though the
clinical safety of γ-retroviral vectors with transcriptionally
active LTRs has raised concerns [113], recent reviews
reflect a robust safety pattern [114]. Suicide gene systems
[115, 116] have also been used within the context of
enhanced safety of long-living virally engineered immune
cells. With NK cells having a relatively short in vivo
persistence, the importance of suicide genes has not yet
been extensively studied in these cells.

γ-Retroviral vectors were among the first vectors to be
used for transduction and in gene therapy, while α-retrovi-
ruses entered the field somewhat later. They generate a

polyclonal transduced population and have a slightly larger
wild-type genome size compared to that of lentiviral vectors.
The first examples involved genetically engineering NK cells
to express IL-2 and avoid endogenous addition of cytokine
following adoptive transfer [117]. Though the efficiencies
were low (<5%), slight improvement was obtained with cell
lines such as NK-92 [118]. A possible explanation for NK
cells’ resistance to retroviral transduction may stem from
the cells’ inherent defense mechanisms against viral infec-
tion, having ultimately evolved NK cells to reject exogenous
gene transfer [119]. A strategy to improve retroviral trans-
duction efficiency involved preactivating NK cells with both
cytokine (IL-2) and K562 cells engineered to express
membrane-bound IL-21 [120]. This resulted in successful
transduction of immature NK cells, while nonactivated and
highly mature CD57+ NK cells remained nontransduced.
Retroviral transduction of NK cells requires rapidly diving
cells and is thus most efficient with cells that have been
expanded ex vivo [121]. In addition, multiple rounds of
transduction are often needed. Guven et al. [122] obtained
an increase in retroviral transduction of NK cells from 27%
and 52% (after one round) or 47% to 71% (after two rounds)
without expansion or following 21 days of ex vivo expansion,
respectively. NK-92 cells can now be transduced with all
retroviral vectors with high efficiencies, and transduction
efficiencies from 60% to above 90% can now routinely be
obtained with γ-retroviral vectors [123].

Lentiviral vectors, unlike their other retroviral counter-
parts, do not require actively dividing cells for effective trans-
duction [124], as their preintegration complex is actively
transported into the nucleus during the interphase. They
contain a set of accessory genes the products of which are
involved in the regulation of transcription. Their typical titer
is higher than that of retroviral vectors (107–108 IFU/ml
compared to 106 IFU/ml for retroviruses). While lentiviruses
are capable of genome integration, integrase-deficient
versions of these have been developed. It is important to
mention, however, that integrase-deficient variants can be
developed for all retroviruses. The use of lentiviral vectors
with NK cells has, however, been challenging. Standardized
protocols have reported lentiviral transduction efficiencies
from 15% for NK-92 cells to 30–40% for LNK, YT, and
DERL7 cell lines [125]. For primary NK cells, stimulation
with IL-2 and IL-12 was shown to enhance transduction effi-
ciency by up to fivefold [126]. However, Tuli et al. reported
diminished lentiviral transduction efficiency after 7 days of
NK cell expansion [127] due to reduced NK viability, indicat-
ing that expansion conditions are important for maintaining
NK cells’ amenability to being transduced.

Boissel et al. [128] reported that, compared to mRNA
transfection of anti-CD19 and anti-CD20 CARs, lentiviral
transfection yields superior transgene expression, up to
73% when cord blood-derived NK cells were used, compared
to <10% for mRNA transfection. For peripheral blood, effi-
ciency was lower, however, and did not exceed 16%.

The use of reagents such as polybrene, protamine sulfate,
or Retronectin has been employed to enhance the efficiency
of viral transduction of NK cells. Polybrene and promatine
sulfate, both cationic polymers, work by reducing NK cell
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virus repulsion [129], thereby increasing the efficiency of
nucleic acid-membrane fusion. Polybrene has been used
routinely in the transduction of genes, including CARs,
into primary NK cells [80, 130–132], while its use with
NK-92 cells has been limited due to its reported toxicity
with that cell line. DEAE-dextran and poly-L-lysine have
also been used [133].

Retronectin, on the other hand, is a truncated version of
the extracellular matrix cell adhesion protein fibronectin
and works by supporting colocalization of viral particles
within its binding domains [134]. Lowe et al. [135] described
a strategy to enhance lentiviral transduction of second
generation CARs into NK cells derived from gene-modified
hematopoietic stem cells using Retronectin CH-296. Vecto-
fusin-1, an alternative transduction enhancer, was recently
reported as a potential alternative to Retronectin [136].
Denning et al. [137] tested a variety of polycations and deter-
mined that, depending on the specifics of the cell population,
no cation can be claimed to be superior at enhancing viral
transduction, and studies should test multiple variants to
determine optimal performance.

Efforts at altering the host range of retroviral vectors―also
known as pseudotyping, which results in the incorporation,
on viral vectors, of glycoproteins from other enveloped
viruses―have been also extensively studied [138]. Common
methodologies for viral pseudotyping have been described at
length [139], alongside the pseudotyping of emerging viruses
[140]. Most commonly, pseudotyping has been carried out
with vesicular stomatitis virus GP (VSV-G). This is because
of its broad tropism and stability of the resulting pseudo-
types. VSV-G-pseudotyped lentiviral vectors were shown to
enhance transduction of NK cells in association with
BX795, an inhibitor of the TBK1/IKKɛ, collectively weaken-
ing antiviral NK cell responses thus enhancing gene transfer
[141]. However, further clarity on the use of VSV-G-
pseudotyped vectors with NK cells is needed.

5.2. Nonviral NK Cell Engineering. In large part due to the
safety concerns associated with the use of viral vectors, non-
viral alternatives have seen a significant increase between the
early 2000s and now. These include all synthetic gene carriers
that can be used to effect stable gene expression in target
immune cells. A major characteristic of most nonviral gene
carriers is their induction of transient gene expression. The
nature of gene delivery from polymers or liposomes bearing
cationic lipids is biphasic, characterized by transient expres-
sion that lasts a few days followed by prolonged, albeit lower
level expression. The transgene, initially in the nucleus, is
thought to eventually be lost away with the dividing cells
[142, 143]. Though inducing genomic integration with
nonviral carriers can be achieved with sleeping beauty or
piggyBac systems, no substantial examples with NK cells
yet exist of these approaches beyond a handful of preliminary
reports (Table 2). PiggyBac transposon systems operate by
recognition of transposon-specific inverted terminal repeat
sequences on both ends of the transposon vector by a
transposase. Upon recognition, the transposase integrates
genetic elements from the original sites into chromosomal
sites. This creates stable genomic integration of target

genomic material. They have most commonly been used for
genetic modification of T cells [144]. Transient gene
expression may be viewed favorably when working with
new carriers or transgenes whose safety profile has not
been established. It also plays to the relatively short-term
persistence of NK cells in vivo, which is under two weeks,
associating a longer-term response with the need for
repeated infusions of transfected NK cells. However, safety
profiles for many of the emerging nonviral vectors are yet
to be established.

5.2.1. Electroporation and Nucleofection. One of the earliest
strategies for nonviral gene transfer into NK cells has been
via electroporation. Electroporation-based methods for
transfection of NK cells are considered safer than viral-
based methods due to the transient nature of gene expression
and avoidance of genomic integration of foreign genetic
material which could result in unwanted replication and, as
such, prone to fewer regulatory constraints. Electroporation
is based on the generation of an electric field to induce tem-
porary permeabilization of the cell membrane. While well
tolerated, cell damage due to irreversible electroporation
can be a concern [145]. Liu et al. [146] demonstrated success-
ful restoration of lytic function to NK cell line YT-1(−) lack-
ing expression of CD11a/CD18 following transfection of
CD18 via electroporation. The authors identified that CD18
was responsible for the loss of cytotoxic function in YT-
1(−) cells―defective in CD18 at the transcriptional and
protein levels―and showed that transfection with a
plasmid-bearing CD18 could partially restore CD11a/CD18
expression. Following transfection, CD11a/CD18 surface
expression was detected in 12.8/11.9% to over 99% of cells
without selection. Since these early studies, electroporation
has been adopted in a large number of NK transfection
studies, with routine transfection efficiencies of above 50%.
Commercial, GMP-compliant electroporation equipment is
now also available [147]―MaxCyte is developing a number
of clinical-grade platforms that can support GMP-
compliant electroporation of cells at high efficiencies, while
Miltenyi has developed a closed-system electroporator as
part of their CliniMACS line of equipment. Using one of
these systems, Carlsten et al. [148, 149] described a GMP-
compliant process for electroporation of mRNA coding for
the chemokine receptor CCR7 and the antibody-binding
receptor CD16 (CD16-158V). Improved NK cell homing
and cytotoxicity against lymphoma cells were achieved,
alongside close to 100% transgene expression. Similarly,
anti-CD19 CARs were also successfully electroporated into
peripheral blood-derived NK cells with an efficiency of up
to 81% [150]. Recently, engineered microsystems for so-
called nanoelectroporation have been described which have
enabled, driven by dielectrophoresis, stable transfection of
anti-CS1 CAR genes in up to 60,000 NK cells/cm2.

While electroporation requires dividing cells in the expo-
nential growth phase, nucleofection was developed to achieve
gene transfer to the nucleus without the need for cell division.
When applied to NK cells [151], superior transfection
efficiencies of over 50% were achieved in early studies.
Nucleofection has since been used to efficiently engineer
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NK cells with a range of CARs, such as anti-ROR for target-
ing metastatic solid tumors [152] or anti-CD20 for target-
ing B-cell non-Hodgkin lymphoma [153] or Burkitt
lymphoma [154]. Alongside engineering NK cells to
express CARs, a promising strategy to immunotherapeutic
interventions has been through the silencing of genes that
cause the suppression of effector functions of NK cells.
One such target is transforming growth factor-beta
(TGF-β), a potent immunosuppressor that has a negative
impact on surrounding NK cells in the tumor microenvi-
ronment. The levels of TGF-β are often elevated in the
serum of cancer patients, and this is associated with weakened
NK cell responses. Zhao et al. [155] reported nucleofection of
NK-92 cells with pTAR-GET plasmid expressing dominant-
negative TGF-β type II receptor (DNTβRII), which blocks
the TGF-β signaling pathway and restores the killing ability
of NK cells. By blocking TGF-β signaling, detected through
the lack of phosphorylation of Smad-2 and Smad-3 in genet-
ically modified NK cells, the authors observed restored lytic
function of NK cells against MCF-7 breast cancer cells. Else-
where, techniques for siRNA-mediated knockdown of gene
expression of NK cells via nucleofection using patented
technologies such as ON-TARGETplus SMART poolsiRNA
have also been described [156].

Electroporation has also been used to generate gene-
edited NK cells in vitro via clustered regularly interspaced
short palindromic repeat (CRISPR)/CRISPR-associated
(Cas9). Dong et al. [157] created tumor suppressor gene
PRDM1-modified NK cells as models of natural killer cell
lymphoma and have shown that gene editing of NK cells
can be a powerful approach to study functional alterations
in human tumor suppressor genes.

It is important to point out that, although electropora-
tion has been successfully demonstrated as an effective
approach for the genetic modification of NK cells, consid-
erations in regard to the type of gene modification and the
expected application are critical. Due to the nature of elec-
troporation and nucleofection, stable genomic integration
of DNA is not achievable with regular plasmid DNA or
RNA transfection. For these reasons, electroporation can
be combined with the transfection of genes that code for
the expression of cytokines or other stimulatory factors
to enhance sustained persistence of cells, especially in solid
tumor environments where longer-term responses and
enhanced persistence are more critical.

5.2.2. Trogocytosis. Trogocytosis is the transfer of membrane
patches from antigen-presenting cells by lymphocytes
through an immune synapse, followed by subsequent expres-
sion of these molecules on the lymphocytes’ own surface
[158]. This process has been employed to engineer the expres-
sion of specific molecules on the surface of NK cells for
enhanced cytotoxic function. Trogocytosis-mediated transfer
of the chemokine receptor CCR7 was designed to occur from
engineered K562 cells to the surface of human NK cells,
resulting, in a study by Somanchi et al. [159], in CCR7 expres-
sion in 80% of NK cells following 1h coculture, alongside
enhanced lymph node migration. Elsewhere, transfer of
CCR7 to NK cells was also demonstrated following coculture

with mature dendritic cells (mDCs) or Epstein-Barr virus-
(EBV-) transformed lymphoblastoid cell lines [160].

More recently, trogocytosis was also employed to effect
expression of CARs on the NK cell surface. Cho et al. [161]
engineered the expression of anti-CD19-BB-ζ on K562 cells,
which were then cocultured in the presence of peripheral
blood-derived CD56+CD3− NK cells. Trogocytosis resulted
in acquisition of the anti-CD19 CAR in 18.6% of NK cells fol-
lowing 1h of coculture, followed by enhanced cytotoxicity of
NK cells against multiple B-ALL cell lines. However, trogocy-
tosis is characterized by relatively short gene transfer times
(72 hours for CCR7 and 2h for CD19) and has so far relied
on liver donor cells to reach high expression levels (from
50% to 80% for CCR7 and 19% to 47% for CD19). This
significantly limits the clinical outlook of this technology
and places it at the fringes of current approaches for nonviral
gene transfer.

5.2.3. Polymer, Cationic Lipid, and Nanoparticle-Based
Transfection. While viral transduction and electroporation-
based approaches have resulted in high efficiencies of gene
expression in NK cells, these methods can be laborious
and require specialized equipment and laboratory setups.
For that reason, nonviral transfection approaches that
utilize nanoparticles, liposomes, or polymers as nucleic acid
carriers have also been under investigation. As an emerging
area of investigation, these studies are still largely prelimi-
nary, and optimization of material properties greatly affects
transfection outcome.

Lipofection―a cationic liposome-based transfection
technique―has been sparingly used to transfect primary
NK cells, largely due to relatively low transfection efficiencies
associated with it. One of the earliest studies on cationic
liposome-medicated transfection demonstrated transfer of
IL-2-expressing plasmid into primary NK cells using
DMRIE/DOPE liposomes [162]. More recently, commercial
lipofection reagent Lipofectamine 3000® was used to trans-
fect primary NK cells with tumor suppressor microRNA
miR-27a-5p inhibitor in a study by Regis et al. [163]. An
efficiency of transfection, based on detection of miRNA in
target cells following electroporation, of 30% was achieved,
while the authors showed that miR-27a-5p directly modu-
lates the expression of CX3CR1. Elsewhere, Youness [164]
described lipofection of miR-486-5p into primary human
NK cells to target hepatocellular carcinoma. miR-486-5p
was recognized as a direct regulator of insulin-like growth
factor-1 receptor (IGF-1R), a modulator of hepatocellular
carcinoma. Following lipofection, elevated expression of
NKG2D and perforins was recorded. By using a combination
of miRNA electroporation and siRNA knockdown of IGF-
1R, the authors showed that miR-486-5p acts by both
enhancing NK cell cytotoxicity through elevated NKG2D
and perforin expression and supporting tumor progression
by modulating members of the IGF axis.

Unlike lipofection which is based on the use of cationic
lipids, nanoparticles have been assembled from a variety of
materials. Nanoparticles are synthetic engineered particles
that range in size from 1 to a few hundreds of nm. They
behave autonomously, are able to be synthesized easily in
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the laboratory, and can be designed to encapsulate and
deliver genetic material [165]. Though widely used in drug
delivery [166], the use of nanoparticles for the engineering
of NK cells is still in its infancy. Amultifunctional lipid nano-
particle containing the lipid YSK12-C4, cholesterol, and
PEG-DMG, called YSK12-MEND, was developed to effect
delivery of GAPDH siRNA to immune cells [167]. When
transfected with the nanoparticles, NK-92 cells yielded 75%
transfection efficiency, lower than that obtained with Jurkat,
THP-1, or KG-1 cells, but higher than many lipid-based
transfection systems, including Lipofectamine® RNAiMAX,
which the authors tested and which yielded about 19% trans-
fection efficiency. To achieve these responses, the authors
used doses of nanoparticle between 1 and 30nM. This
was likely, the authors argued, due to low aggregability
of the nanoparticles, thereby enhancing their accessibility
to the cells in the medium. However, the manufacturing
procedure of YSK12-MEND is more laborious compared
to off-the-shelf alternatives and further optimization of
performance characteristics for primary cells needs to be
made. Currently, all data is based on cell lines which are
considerably easier to transfect.

By comparing the gene transfer efficiency of Lipofecta-
mine 2000®, polyethylenimine (PEI), and magnetic iron
oxide nanoparticles into peripheral blood mononuclear cells,
Przybylski et al. [168] found that there were strong effects on
the proliferative ability of immune cells induced by the vari-
ous nanoparticle systems. In particular, iron oxide nanopar-
ticle exerted a strong antiproliferative effect on immune
cells both in vitro as well as in vivo, in contrast to Lipofecta-
mine, which enhanced proliferation, or PEI which inhibited
proliferation in vitro but showed increased mouse survival
in vivo. Overall, these results have suggested that various
nanoparticle systems act by mediating specific pro- or anti-
inflammatory mechanisms which might have broader
immune effects, so their choice might require considerations
of specific effects that can be induced by their use.

Nanoparticles are also being used to enhance expan-
sion of NK cells for adoptive transfer, independent of
direct transfection. Oyer et al. [169] developed one such
nanoparticle-based technology, which is based on the use
of particles prepared from K562-mb21-41BBL cells, which
express 41BBL and membrane-bound interleukin-21.
When these particles were used to stimulate NK cells
ex vivo alongside low-dose interleukin-2 (1000U/three
times per week), the authors reported a 66-fold higher
amount of NK cells. This technology is currently proceeding
to clinical trials.

Other polymers and transfection reagents are increas-
ingly being utilized for the genetic modification of primary
immune cells, most notably T cells. It is expected that as
these approaches mature, they will be applied to the
genetic engineering of NK cells in place of viral- or
electroporation-based methods. As a whole, nanoparticle-
based approaches for gene transfer effectively address issues
of safety, biocompatibility, and immunological control. On
the other hand, few if any have successfully demonstrated
comparable performance to viral-based approaches. More-
over, nanoparticle-mediated gene transfer necessitates a

cascade of extra- and intracellular events to take place to
traffick the transgene of interest across the cell, out of the
endosome and into the nucleus, placing additional design
constraints on their development. To support the intracellu-
lar delivery of genetic cargo, nuclear localization signaling
peptides [170] and microtubule-associating sequences [171]
have been incorporated into nonviral gene delivery carriers;
however, their use is still highly experimental, indicating that
significantly more optimization is needed before the fully
fledged use of these systems can take off.

6. Clinical Perspective and Outlook

Despite the extensive body of work, only a handful of NK-
based therapies have progressed to the clinic. In the
United States, two clinical trials (NCT00995137 and
NCT03056339) with genetically modified NK cells are
recorded as of mid-2018, both redirected against CD19
using CARs. There are a total of eight clinical trials regis-
tered worldwide utilizing genetically engineered NK cells,
two of which are targeting solid tumor malignancies
(Table 3). These trials are driving home the promise of
NK cells as safer alternatives to engineered T cells. How-
ever, as discussed above, multiple issues exist that need
to be considered when designing adoptive NK cell-based
cancer immunotherapies: efficacy and safety being the pri-
mary―though by no means only―ones. While not all
issues that have been associated with CAR-T cells will
apply to NK cells, such as induction of GvHD, a more
comprehensive understanding of the importance of safety
mechanisms such as the introduction of suicide genes to
NK cell therapies is needed.

As these trials approach more advanced stages and the
dose capacity increases, issues related to manufacturability
will become more prominent. While remarkable advances
have been made with the isolation, expansion, and manipula-
tion of these cells―in one of the clinical trials, for instance,
NK cells are coexpanded in the presence of K562-mb15-
41BBL cells―scaling up production is still a major challenge.
Companies such as Cyto-SEN are set to embark on phase I
clinical trials with adoptively transferred NK cells based on
novel, nanoparticle-based approaches for expanding these
cells. Not unlike T cell-based immunotherapies, most pre-
clinical and clinical success with engineered NK cells has so
far been observed with hematological malignancies. The use
of NK cells to target solid tumors suffers from deep TME
immunosuppression due to metabolic reprogramming,
tumor heterogeneity, and hypoxia, resulting in poor tumor
infiltration of NK cells and, ultimately, poor antitumor
immunity [172]. However, an ongoing clinical trial against
MUC-1+ solid tumors and one targeting metastatic solid
tumors responsive to NKG2D (Table 3), alongside advance-
ments in improving the trafficking of NK cells into solid
tumors by engineering chemokine receptors such as CXCR2
[173, 174] into solid tumors, are demonstrating advance-
ments into targeting cancers that have traditionally been dif-
ficult to treat with NK cells.

For the successful translation of genetically modified NK
cells, issues of vector safety and efficacy will have to comply
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with regulatory guidelines. The International Organization
for Standardization (ISO) has begun development of cell
therapy standards, with the first one set for publication in
2018, while the FDA announced a comprehensive regenera-
tive medicine policy framework in November 2017, which
highlights safety and efficacy in particular. Manufacturing
of engineered NK cells for clinical trials is currently carried
out in GMP facilities under decentralized manufacturing
models, with third-party vector engineering labs providing
vectors for genetic fusion with NK cells. At the same time,
development of cGMP-compliant electroporation equipment
continues, which is enabling the testing of point-of-care
manufacturing that not only includes cell isolation and pro-
liferation but also genetic modification steps, for the better
deployment of engineered cell therapies.

It is evident that the increasing variety and number of
preclinical investigations with genetically engineered NK cells
are poised to lead to an expansion in clinical-stage studies.
However, successful clinical outcomes are going to depend
on the convergence of vector engineering andmanufacturing,
cell culture enhancements, understanding of NK cell biology,
and compliance with maturing regulatory frameworks.
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